字体大小

小字标准大字

背景色

白天夜间护眼


第四章 生产环节的节能减排(1)

工业企业在利用能源和各种资源生产产品的同时,要积极采用无污染或少污染工艺,搞好综合利用,尽可能不排放或少排放污染物,避免对周围环境的污染与破坏。

--国家环保委员会、国家经委

《工业企业环境保护考核制

度实施办法(试行)》

1.生产资料的节能

生产资料是人们从事物质资料生产所必需的一切物质条件,即劳动资料和劳动对象的总和。其中劳动资料是指人用以影响和改变劳动对象的一切物质资料的总和,包括生产工具、土地、建筑物、道路、运河、仓库、机器、设备、厂房等。劳动对象,政治学上指在劳动中被采掘和加工的东西,可以是自然界原来就有的如地下矿石,也可以是加工过的原材料如钢材等。

在企业的生产过程中,搞好生产资料的节能工作,不但能为企业创造较大的经济效益,同时也能降低生产成本,节能降耗,为企业持续发展打下良好的基础。

2.电机系统的节能

电动机被广泛地应用于各个领域,电动机的用电量在世界各国的总用电量中都占有相当大的比重。在中国,电动机的用电量已经占到社会总用电量的60%以上。

为满足不同机械设备传动和动力的需要,我国小型电动机产品品种已发展到一百四十余个系列,六百多个品种,五千余个规格;广泛用于化工、石化及煤炭工业的小型防爆电动机已生产一百三十个系列、两千余个规格,其中02系列、Y系列、Y2系列和YX、YX2系列是中国电动机应用市场的主要组成部分。

根据中国电器工业协会电机分会的统计数据,2001年中国大、中、小型交流电动机市场总容量约为4.4万兆瓦,其中大型电动机占7.3%,中小型电动机占92.7%,小型电动机占总量的71.5%,中型电动机占总量的21.2%。在这些品种中,小型电动机是中国电动机市场的主导产品。

我国已具备生产高效电动机的技术条件(YX、YX2、Y2E等高效系列),但由于市场条件不够成熟,产量和市场容量都较小。1998年高效电动机市场主要是出口美国符合NEMA标准的电动机,产量比例还不到2%。1999年高效电动机市场为2%;2000年为4.7%;2001年也只有6.5%。其中70%以上为出口,用于中国市场的产品很少。

电动机能效水平的提高对于节约能源、环境保护以及资金节约都具有重要意义。我国2001年实际发电量为1.5万亿千瓦时,其中约有50%的电能由电动机转换成机械能,因此,电动机的输入电能为7325亿千瓦时,如果电动机效率提高2%,就可节约146亿千瓦时的电能,相当于两个100万千瓦电站的年发电量,从而可以大大减少一次能源的消耗和二氧化碳的排放,并可相应节省电站建设的投资和电动机用户的电费支出,因此电动机能效水平的提高有着重要的社会意义和经济意义。

3.高效电机的节能

由于世界各国的电动机用电量都占到了其全国发电量的大部分,所以提高电动机的效率对节约电能意义重大。

那么,怎样才算是高效电动机呢?它的指标又是多少呢?在我国,人们通常所指的高效电动机是高效率三相异步电动机,也就是效率水平达到或超过国家标准所规定的节能评价值的电动机。其总损耗比Y系列电动机降低20%~30%,效率提高2%~3%。

在美国,按照美国“全国电气设备制造商协会标准”规定,高效电动机要比标准电动机效率提高2%~6%,损耗下降20%~30%。此外,美国还出现了超高效电动机,其效率高于上述标准的电动机0.8%~4%。

企业应用的异步电动机,依工作状况可分为频繁启动、间断工作和连续工作三类。为了提高电动机的运行效率,要尽可能使生产机械在各种状态下所需要的能量与电动机输入能量相等,有效利用电能。在设计制造部门,要设法降低电动机内部的功率损耗,提高电动机效率。功率和功率因数高是高效节能电动机的主要特点。

一般常规电动机的效率曲线是不平坦的,随负载的减小,效率降低幅度较大,使用中的电动机,都在低于额定效率下运行。因此,高效节能电动机应满足以下几点:

(1)按额定功率计算,功率损耗应减少30%。

(2)效率曲线应尽可能平坦。

(3)轴的中心高和额定尺寸,应符合国家标准规定。

高效节能电动机,用料较多,成本较高,因此只有在负载率和利用率较高使用条件下运行,才能在较短时期内回收投资。

4.高效电动机的运用

高效电动机最佳的节能效果是将其应用于连续工作定额、负载稳定且无特殊要求的设备上,特别是用于负载率较高(如70%以上)和连续运行时间较长(如年运行时间在3000小时以上)的设备上。

机械设备配套是电动机的主要用户类型。高效电动机在机械配套中主要分布在泵、风机和气体压缩机上,其次是石化设备、石油设备、矿山机械和冶金机械等。

另外,九大工业行业用电共占全社会总用电量的35%,其中,化工、建材、电力和冶金是耗电大户,同时也是节能潜力最大的市场,而且电动机的用电量占全企业用电量的68.9%。从各行业的电动机使用情况来看,主要是Y/Y2系列电动机,还有相当部分的JO系列电动机,YX高效电动机则主要应用于石油和城市给排水行业。

从行业的需求来看,石油、石化、化工、纺织、电力、给排水等行业对高效电动机应有一定的市场需求。耗能越大,节能潜力就越高,高效电动机应用也就更广泛。由于石化、化工和纺织行业耗能大,电动机长期连续运转,所以,它们是使用高效电动机最多的行业;石油工业、电力工业和城市给排水次之。

5.电机的调速节能

在20世纪70年代以前,工业应用的电力拖动设备大多数采用交流电动机的恒速拖动,所以很久以来,在工业生产中大量应用的风机、泵类等需要进行流量调节控制的电力拖动系统中,人们不得不保留交流电动机的恒速拖动,采用挡板和阀门来调节风速、流量、压力等。这种原始方法不仅增加系统的复杂性而且还造成能源大量浪费。

随着电力电子技术、微电子技术及控制理论的发展,作为交流调速中心的变频调速技术得到了显著的发展,而且已经广泛地应用于工业生产的各项领域。

以风机水泵为例,根据流体力学原理,流量与转速成正比,风压或扬程与转速的平方成正比,所以轴功率则与转速的立方成正比。理论上,如果流量为额定流量的75%,使感应电动机转速控制在额定转速的3/4运行,其轴功率为额定功率的42%,与采用挡板或阀门调节相比,可减少58%的功率;如果流量下降到额定流量的50%,使感应电动机转速在额定转速的1/2运行,其轴功率为额定功率的1/8,与挡板或阀门调节相比,可减少7/8的功率。由于调速转差功率损耗和控制装置的附加功率损耗都比调速减少的功率损耗小得多,实际节电效果是相当明显的。因此,调速技术应用在负载率偏低和流量变动较大的风机和泵类等流体设备的电力拖动上可获得显著的节电效益,这也是风机和泵类为什么是调速技术节电应用的重点对象的主要原因了。

6.变频调速系统的优点

变频器容易实现对现有的交流电机进行调速控制。在工业生产中,如电厂、矿山和冶金、石油、化工、机械、电子、建材、纺织、轻工等许多行业大量存在需要电机变速及软起动的场合。根据全国第三次工业普查公布的统计数字,我国风机水泵压缩机类通用机械总装机容量为1.6亿千瓦,其中风机约为4900万千瓦,水泵约为1000万千瓦,年耗电3200亿度,占全国耗电总量的1/3,占工业用电量的40%,在国民经济中举足轻重,节能潜力很大。特别是1998年1月1日我国实施的《节约能源法》第四章第三十九条(二)款明文规定:“逐步实现电动机、风机、泵类设备和系统的经济运行,发展电机调速的电力电子技术……提高电能利用率”。而且实践证明:通过变频调速来取代利用阀门、挡板控制,节电效果明显,特别是对于大中容量交流电动机拖动的风机、泵类系统,若采用变频调速,节电效果更加明显,而且回收投资期短,一般为1~2年。

调速范围大而且连续

变频调速系统通过连续改变变频器的输出频率来实现转速的连续变化,使电动机工作在转差较小的范围,电动机的调速范围较宽,运行效率也明显提高。一般来说,通用变频器的调速范围可达1∶10以上,而高性能的矢量控制变频器的调速范围可达1∶1000。

容易实现正、反转切换和构成自动控制系统

在电网电压下运行的交流电动机进行正、反转切换时,只需改变相序即可实现。如果在电动机尚处高速时就进行相序切换,电动机内将会产生较大的冲击电流,甚至有烧毁电机的危险。而在变频调速系统中可以通过改变变频器输出频率先使电动机降至低速,再进行相序切换。这样切换电流可以比较小,电动机的功耗和发热也都减小了许多。另外变频器有接口同其他设备一起构成自动控制系统。

起动电流小,可用于频繁起动和制动场合

异步电动机直接起动的起动电流通常为额定电流的5~6倍,电机损耗较大,所需电源容量也很大,因此不宜频繁起、停。采用变频器对异步电动机进行驱动时,可以将变频器的输出频率降至很低时起动,电动机的起动电流很小,因而变频器输入端要求电源配置的配电容量也可以相应减小。另外它还可以采用变频器来实现电气制动。制动时变频器的输出频率先逐步减小,负载所存储的机械能将转换为电能回馈到变频器,通过一定的制动回路将这部分能量或者以热能形式消耗掉,或者回馈给电网。因此变频器驱动交流电机调速系统可以工作在频繁起动和制动场合。

结构简单、运行安全可靠

变频调速系统中异步电机结构简单、坚固耐用,而且通常不需再用齿轮箱等其他变速装置,保养、维修都比较简单,可根据工作环境的不同,选择不同的异步电机,而变频器通常不需改变。因此,变频调速系统能应用于易燃、易爆、腐蚀等恶劣环境中。

鉴于以上所列出的变频调速的部分优点,在交流电机的调速技术中,变频调速是应用面最大、效率最高的。交流变频调速是当代电力电子、微电子、自动控制、传感器、电机等多种先进技术集成起来的一项高新技术。

近20年的理论发展和应用实践表明,它的调速性能好、节能明显,是电气传动的发展方向;它的应用面宽,为企业节能降耗、提高产品质量和生产效率、最终为提高经济效益提供了技术的和物质的手段。因此各工业发达国家都把发展交流电动机变频调速作为技术进步、提高效率和节省能耗的一大措施。已经应用这种技术的单位都取得了很好的节电效益。

7.变频调速系统的投资成本和利润

投资于节能项目,到底有没有效益,回收期是长是短,这是所有投资者都非常关心的问题。这个问题的答案是肯定的。但是,鉴于近20年来推广应用变频器的经验与教训,有些问题还需要讨论。这些问题的解决和投资量相关,实际上直接涉及投资的成本、利润和回收期。节能、节电是长期的,投资回收后的效益也是绝对的,关键是合理的回收期应该如何确定。投资者应该有信心,也应该知道项目风险之所在。

(1)系统越简单,设备投资额就越少,并不是技术越先进越好。

对于中、小型交流电动机拖动的普通风机、水泵等系统,不需要精确地调节转速,如果变频器与电动机之间距离很近,低压变频器就能够正常工作。

如果输出量不需要调整但起动频繁,可以购置软起动器,以减少起动制动过程的能耗,这样投资也比较少。要根据系统的实际工况选择最合理的调速方案和最经济的系统设备。

(2)变频调速系统是有较多谐波的非线性、非正弦工况,它会在电动机上引起电应力,致使电动机的工作寿命下降。在某些重要应用中,采用变频调速专用电动机是必要的,特别是在1~10千伏的电压中。较大功率的情况下,或者在变频器同电动机之间的馈电电缆很长的时候,应选用专用电动机,或者选用输出为正弦波的专用变频器。这种成本的增高是必要的。

(3)变频器运行中的谐波还对电网造成污染,尤其是较大功率的电动机调速系统,轻的破坏电网的电力品质,严重的会引起供电变压器或电力电容器烧毁,甚至爆炸。而且谐波引起的畸变无功加重,系统的功率因数下降,将按电网规定承受大额罚款。对于低电压中、小功率变频器,采用有源功率因数修正环节也是有必要的。人们不能在庆贺节约有功功率的时候,大量消耗无功功率;更不能在成功节能的时候,破坏了电力系统的安全。一定要考虑周全采取正确的治理措施。

(4)许多家用电器的电动机调速,电动机功率只有几十瓦或几百瓦,最大的单机1~2千瓦。在这样的情况下,采用常规的三相交流异步电动机实施变频调速,其成本偏高,不见得是最好的节能调速方法。在这里调速成本比较低的永磁无刷电动机或改进的开关磁阻电动机能派上比较大的用处。

(5)采用交流电动机变频调速系统后,不仅能取得节能效益,往往还会形成产量上升、质量提高、劳动生产率增加、环境改善等综合效果。所以在统计系统利润的时候,也要看其综合效益。作为用户,常常是因为有更大的非节能效益的存在,才有更大的决心和动力来实施变频调速的技术改造。用户应该在这个时候尊重客观规律,同时还要治理谐波等电力公害。

总而言之,采用交流电动机变频调速节能系统,能否在较短期间回收投资,要看综合投资与综合效益(利润)的总体考虑。变频器的价格大致在每千瓦800~1500元。

为使这样一项高效节能技术长久地运行,一些配套技术和产品应计入成本。该省钱的地方应该省下来,不该省钱的地方则应该果断地花出去。正确的“技术--经济”综合决策,正是推广应用交流电动机变频调速节能技术的困难所在。让我们在互相借鉴的实践中,不断总结经验教训,增强对这项技术的深入认识,使其迅速地推行到节能的前沿。

8.电动机变频调速技术

为达到提高生产效率和节约能量的目的,必须正确选择系统配置,特别是选择这种系统中的电动机和变频器,它涉及可靠性、性能和价格三方面的因素。

变频调速系统主要包括异步电动机、变频器、控制环节、负载及传动机构。

在选择电动机时不仅要考虑驱动机械负载和使其加速所需的电机容量,还应根据生产环境选择相应的电机防护等级。另外,由于这时电机不是由电网供电,而是由变频器供电(即在变频调速运行时,大部分时间里该电动机不是工作在该电机设计制造的额定工况),会带来谐波、电磁干扰,也许会出现局部过电压、过电流等问题。同时让变频器尽量减少谐波、电磁干扰等带来的影响也是应该考虑的。

9.电动机的正确运用

合理选择和使用电动机,确定最佳运行方式降低电动机的能量损耗是提高电动机运行效率的最基本的方法。在选用电动机时,应首先选择电动机形式和功率及各种技术参数,使它具备与其所拖动的生产机械相适应的负载特性,能在各种状态下稳定地工作。

10.电动机功率的选择

电动机的额定输出功率在理论上讲通常是按最大负载选定,而实际上,部分电动机的输出功率是周期性变化的。电动机的功率损耗大部分为铜损耗,铜损耗与负载电流的平方成正比,当功率因数为一定时,则与输出功率的平方成正比。所以,要想知道包括铜损及负载需要的电动机输出功率,只需计算出负载的均方根植。

对负载率低于50%的电动机,应按经济运行原则选择电动机功率。如未经分析计算就将负载率低于50%的电动机换小,有可能使电动机的效率反而降低使电能损耗增加。

确定电动机需要的输出功率时,应注意以下两个问题:

(1)对计算功率所需要的有关参数值(如摩擦因数、负载、速度、风量、风压等),所留容量不要过大。

(2)所选用的电动机应满足负载所需要的启动转矩、最大转矩和最大负载。

对于运行的电动机,应测定负载率。一般异步电动机的额定效率和功率因数,是按负载率在75%~100%范围内考虑的。异步电动机的效率和功率因数随负载变化的关系见下表所列数据。

电动机电压等级的选择

对于低压、高压的中型电动机系列,还存在一个电压等级的合理选择问题,只要选择适当,则在保证电动机性能的前提下,能达到节能省损的效果。

我国三相异步电动机常用的电压等级有:220伏、380伏、3000伏和6000伏等。500伏以下称为低压,500伏以上称为高压。下表列出了功率为5千瓦时同极数、不同电压等级规格的双鼠笼三相异步电动机的性能指标。

对于低压、高压的电动机,凡是供电线路短、电网容量允许,且启动转矩和过负载能力要求不高的场合,以选用低压异步电动机为宜。因为这种电动机力能指标高,利于节电;价格便宜,减少一次性投资,维护方便,采用一般低压电器即可。

当然对于那些供电线路长、电网容量有限、启动转矩较高或要求过负载能力较大的场合,应该以选用高压电动机为宜。

12.电动机负载特性的选择

异步电动机用途很广,它所拖动的负载种类很多。根据负载特性,合理选用电动机,对于提高设备运行时的安全可靠性和节能具有实际的意义。

电动机的运行特性受它所拖动机械负载特性的影响。有些机械,如大部分风机、鼓风机、离心机、压缩机等,要求较小的启动转矩,但启动后所要求的拖动转矩随转速的上升而增加,因此通常选择一般机械特性的电动机。

另外一些机械,如往复式空气压缩机、带负载的传送机等要求有较大的启动转矩,故常选用高转差率的机械特性的电动机。这种电动机也适用于冲击负载或要求频繁启动的负载,如冲床、油井泵和起重机械。所以要想满足节能、安全运行的标准就只有电动机的机械特性和它所托动的负载特性合理匹配。

13.余热资源的有效利用

余热资源在钢铁、石油、化工、建材行业大量存在,也普遍存在于其他行业。轻工和食品等行业的生产过程中,都存在着丰富的余热资源,被认为是继煤、石油、天然气和水力之后的第五大常规能源,所以充分利用余热资源也是企业节能的主要内容之一。

在各种生产过程中,往往会生成具有热能、压力能或具有可燃成分的废气、废汽、废液等产物,在不少化学工艺过程中,还会有大量化学反应热释放出来。有些产品还可能会大量的物理显热。这些带有能量的载能体都称为余能,俗称余热。这些余热资源可用于发电、驱动机械、加热或制冷等,从而减少一次能源的消耗,并减轻对环境的热污染。

能量有品位的高低,而热能是属低品位的能,它也可以从它转换为高品位能和直接利用时的难易程度或作用大小来区分其量的高低。通常评价热能品位最简单和直观的方法是用温度的高低。获得热量的温度高,则利用方便;温度低的热量利用就困难。当温度低到环境温度时,它就无法利用了。

我国工业企业的余热利用潜力很大,余热利用在当前节约能源中占重要地位。余热资源的回收利用可不是件容易的事,它要求工艺上、技术上可行,经济上合理,而且还要保护环境。如何应用当代最新科学技术,充分利用余热资源是摆在科研工作者和企业一线生产人员面前的重要任务和研究课题。

余热资源是指在目前条件下有可能回收和重复利用而尚未回收利用的那部分能量。它不仅决定于能量本身的品位,还决定于生产发展情况和科学技术水平,也就是说,利用这些能量在技术上应是可行的,在经济上也必须是合理的。

例如,欲回收100℃以下的低温余热,就要有解决相应技术难题的能力;要从高温高腐蚀性介质中回收余热,首先必须有耐热耐蚀性很强的材料等。

所以,生产和科学技术的发展水平是决定余热资源的数量。

必须指出,余热回收固然很重要,但最根本的问题还在于尽量减少余热的排出,这方面的主要措施是降低排烟温度,减少冷却介质带走的热量,减少散热损失,提高热工设备本身的效率等。

14.余热资源的主要来源

余热资源的来源主要有如下六个方面。

高温烟气的余热

这是一种数量大分布范围广的余热。高温烟气余热分布在冶金、化工、建材、机械、电力等行业,如各种冶炼炉、加热炉、石油化工装置、燃气轮机、内燃机和锅炉的排汽排烟,某些工业窑炉的高温烟气余热甚至高达炉窑本身燃料消耗量的30%~60%。它们不仅温度高、数量多,而且回收容易,约占余热资源总量的50%。

高温产品和炉渣的余热

许多工业生产都要经过高温加热这一过程,经高温加热过程生产出来的产品如金属的冶炼、熔化和加工,煤的汽化和炼焦,石油炼制以及烧制水泥、砖瓦、陶瓷、耐火材料和熔化玻璃等,它们最后出来的产品及其炉渣废料都具有很高的温度,达几百至1000摄氏度以上,通常产品又都要冷却后才能使用,在冷却时散发的热量就是余热。这部分余热往往占设备燃料消耗量的比重较大,如炼钢炉渣热量占冶炼燃料热的2%~6%,有色金属冶炼炉渣占10%~14%。

我国每年由冶金炉渣带走的热量相当于2兆吨标准煤。从每吨热焦炭中可回收的热量相当于40千克标准煤,每吨热钢坯可回收热量67兆焦耳(22.9千克标准煤),相当于加热量的1/4。

现在炼钢工业中采用的干法熄焦、连铸、热装连轧等新工艺,就是回收这部分余热。高温产品和炉渣的余热约占余热资源总量的4%~6%。

冷却介质的余热

冷却介质是保护高温生产设备和生产工艺不可缺少的东西。常用的介质是水、空气和油。它们的温度受设备要求的限制,通常较低,如电厂汽轮机冷凝器的冷却水,不能超过25℃~30℃,内燃动力机械的冷却水大约为50℃~60℃;温度最高的是冶金炉和窑炉冷却水,也不过80℃~90℃。

因此,对这部分低温余热的利用比较困难,需要较大的设备投资,如利用热泵或低沸点工质动力设备等。不过,这部分余热量还是相当多的,约占余热资源总量的15%~23%。如冶金炉的冷却介质余热占燃料消耗量的10%~25%,高炉占2%~3%,凝汽式发电厂各种冷却介质带走的热量约占其燃料消耗量的50%。

可燃废气、废液和废料的余热

生产过程的排气、排液和排渣中,往往含有可燃成分。这种余热约占余热资源总量的8%。如转炉废气。炼油厂催化裂化再生废气,炭黑反应炉尾气、造纸生产中的纸浆黑液,以及煤焦油蒸馏残渣等。下表表示它们的发热量。

废汽、废水余热

这是一种低品位蒸汽及凝结水余热,凡是使用蒸汽和热水的企业都有这种余热,这部分包括蒸汽动力机械的排汽(其余热占用汽热量的70%~80%)和各种用汽设备的排汽,在化工、食品等工业中由蒸发,浓缩等过程产生的二次蒸汽,还有蒸汽的凝结水、锅炉的排污水以及各种生产和生活的废热水。废水的余热约占余热资源的10%~16%。

化学反应余热

这种余热主要存在于化工行业,是一种不用燃料而产生的热能,它占余热总量的10%以下。例如硫酸制取过程中利用焚硫炉或硫铁矿石沸腾炉产生的化学反应热,使炉内温度为850℃~1000℃,可用于余热锅炉产生蒸汽,约可回收60%。

由上面我们可以看出余热的分布之广,来源各异,而且不同工业行业中产生的余热性质和数量相差很大。据估计,冶金部门总余热资源占其燃料消耗量的50%以上,机械、化工、玻璃、搪瓷、造纸等企业占25%以上。

15.余热资源的温度类型

高温余热

这是一种温度高于500℃的余热资源。属于高温范围的余热大部分来自工业炉窑。其中有的是直接燃烧燃料产生的,如熔炼炉、加热炉、水泥窑等。有的主要靠炉料自身燃烧产生的。如沸腾焙烧炉、炭黑反应炉等,国外城市垃圾热值为3349~10465千焦/千克,离开焚烧炉的烟温达到840℃~1100℃,可以回收利用。

中温余热

温度在200℃~500℃之间的余热资源。各种热能动力装置及某些炉窑设备中的高温气体在燃烧室或炉膛中做功或传热后排出的气体一般在中温范围内。这挡温度比较适中,有些可继续做功,有些可产生蒸汽或预热空气等,利用前景十分良好。

低温余热

温度低于200℃的烟气及低于100℃的液体属于低温余热资源。

低温余热的来源有两个方面:一方面是有些余热在排放时本身的温度就是低的;另一方面是在高温、中温余热回收中仍然会有剩余的低温余热排放出,由于低温余热回收时温差小,换热设备庞大,经济效益不太明显,回收技术也较复杂,因此过去对此不予重视。但是如果面广量大,回收总量也是非常大的。由于能源短缺和科技的进步,对低温余热的回收利用也日益重视,而且取得了很大的进展。

16.钢铁冶金工业余热资源

我国的可资利用余热资源非常丰富。据不完全统计,主要行业工业余热约占工业总能耗的15%。

其中钢铁工业可回收的余热资源约为总能耗的50%。一座现代化的钢铁厂所排放出来的能量,有40%存在于各种介质的高温气体中,15%是低温蒸汽和热水,还有10%为辐射损失,可见其节能潜力很大。

17.石油工业余热资源

石油加工过程中需消耗燃料、蒸汽、电力等各种能源。据统计,每加工1吨原油平均消耗燃料42.42千克,蒸汽570千克,电力34.5度。将它们统一折算相当于358104千焦,其中50%以上的能源消耗是通过各种油加热炉和蒸汽锅炉的烟气热、空气冷却器和水冷却器被排放而损失掉的,而且相当一部分还比较集中,可以利用。例如一座年产250万吨的炼油厂,通过空冷、水冷和烟道三方面排走的热量每小时高达480106千焦,其温度都在100℃~550℃范围内。

18.化工工业余热资源

虽然化工企业所消耗的能量约占总能耗的20%,但其能量利用率却不高。主要由于工序车间操作条件的改变,部分能量由于工艺物流的降温、降压而释放出来,成为废热和废功散失于周围环境中。以轻柴油和石脑油为原料的大型乙烯装置中,裂解气温度高达800℃左右。可以用来产生高压蒸汽。以重油为原料的合成氨厂中,汽化炉里进行强化放热反应,裂解气温度高达1350℃,也可以用来产生高压蒸汽。一套年处理量为240万吨的大型催化裂化装置,可供回收的能量达2万千瓦,除了可满足本装置主风机需要的巨大动力(1.5万千瓦)以外,尚有余力发电,供全厂使用。

由于世界性能源危机的冲击以及化工生产向大型化发展,促使将动力系统引入化工生产并和工艺系统密切结合。例如大型合成氨厂中由于采用了高压余热锅炉、蒸汽轮机及离心压缩机,可以达到基本上不需外供电,能量利用率从20世纪50年代的大约30%一下子提高到60%以上。

19.机械工业余热资源

机械行业中的加热设备和炉窑各种各样。余热资源也相当丰富,例如锻件加热炉的烟气温度高达1000℃以上。可利用余热锅炉产生蒸汽。蒸汽锻锤的排汽压力在大气压以上,而且数量也很大。如某汽车制造厂的锻造分厂锻锤排汽每小时就达13吨以上,每年损失热量折合标准煤5000多吨。又如各种热处理炉的排气温度达425℃~650℃,干燥炉和烘炉的排气温度达230℃~600℃,这些都是很好的余热资源。

20.其他工业余热资源

其他行业也有不少的余热资源,例如各类工厂供热系统产生的凝结水,以往多数不回收,由此造成的燃料浪费达8%。又如一些设备和部件的工业冷却水,水温为35℃~90℃,是极为广泛而大量的低温余热资源。下表为我国主要行业的余热资源情况。

利用余热的一般方法

余热的回收利用方法,随余热源的形态(固体、液体、气体、蒸汽、反应热)和温度水平(高温、中温、低温)等各不相同。

尽管余热回收方式各种各样,但总体可分为热回收(直接利用热能)和动力回收(转变为动力或电力后再用)两大类。从回收技术难易程度看,利用余热锅炉回收气、液的高温余热比较容易,回收低温余热则比较困难。在回收余热时,首先应考虑到所回收余热要有用处和在经济上必须合算。如为了回收余热所耗费的设备投资甚多,而回收后的收益又不大时,就得不偿失了。通常进行回收余热的原则如下。

(1)对于排出高温烟气的各种热设备,其余热应优先由本设备或本系统加以利用。如预热助燃空气、预热燃料或被加热物体(工质、工件),以提高本设备的热效率,降低燃料消耗。

(2)在余热余能无法回收用于加热设备本身,或用后仍有部分可回收时,应用来生产蒸汽或热水,以及产生动力等。

(3)要根据余热的种类、排出的情况、介质温度、数量及利用的可能性,进行企业综合热效率及经济可行性分析,决定设置余热回收利用设备的类型及规模。

(4)应对必须回收余热的冷凝水,高、低温液体,固态高温物体,可燃物和具有余压的气体、液体等的温度、数量和范围制定利用的具体管理标准。

22.余热回收利用的注意事项

在余热回收利用中,需特别考虑下述几个方面。

(1)为了利用余热,不但要添加相应的回收装置,需要支出一笔投资,而且还要加大占地面积,增加运行管理环节。因为,在能源管理中,企业的注意力首先要放在提高现有设备的效率上,尽量减少能量损失,绝不要把回收余热建立在大量浪费能源的基础之上。如果企业单位回收损失能量,而不去发挥现有设备的运用效率是无法长远发展的。

(2)余热资源很多,不是全部都可以回收利用,余热回收本身也还有个损失问题。在目前的技术和经济条件下,一部分是应该而且可以利用的,另一部分目前还难以利用,或利用起来不合算。而且现在回收余热还没有一个标准,所以要完全实施是非常困难的。一般地说,可连续利用的高温烟道气,有燃烧价值的可燃气体等可优先考虑回收的可能性。

(3)余热的用途从工艺角度来看基本上有两类:一类是用于工艺设备本身;另一类是用于其他工艺设备。通常都是把余热用于生产工艺本身。一方面回收措施往往比较简单,投资较少;另一方面,在余热供需之间便于协调和平衡,容易稳定运行。例如,锅炉的高温烟道气要加热锅炉本身使用的燃料(煤、油、气),预热燃烧用的空气。或者加热锅炉给水时,只要锅炉正常运行,余热回收就不会停止,余热利用就连续进行,锅炉回收装置都可稳定地工作;当锅炉停止运行时,余热的回收与利用也随之停止了。这种方法被许多电站和企业都重用了。

而如果把余热回收用在其他工艺设备上,回收与利用一定要配合好,因为它不容易储存,甚至不能储存。这是因为,余热的多少随余能发生设备的运行条件而变化,余热供应一般不太稳定;发生能量需求变化时,余热发生设备不能随之变化,即余热回收与利用无法保持同步。例如,余热锅炉就是这样,为了提高回收效果常采取两种方法:一种是把余热锅炉作为辅助锅炉来使用,用主锅炉来进行调节;另一种是余热发电,利用电网起调节作用,我国不少企业就是这样做的。

23.化肥生产余热回收

化肥企业“半水煤气”温度在350℃左右,余热回收时使用普通废热锅炉存在严重的堵、腐、漏、磨问题,设备寿命短,长的一年,短的几个月,严重时甚至造成系统停车损失。热管余热锅炉的应用,成功地解决了上述问题,用户普遍反映阻力小、热效率高、使用寿命长,运行稳定可靠,使化肥企业“两煤变一煤”成为现实。

24.化工生产余热回收

无机化工生产中,利用煤气做干燥、锻烧热源生产工艺较多,如磷酸盐中五钠聚合工段、冰晶石煅烧、白炭黑干燥等,在这些工艺中,都要求气源尽可能干净。煤制气传统工艺是:煤、水、空气反应生成煤气,经双束管洗涤、降温,再经洗涤塔洗涤,然后除焦脱硫后,才可使用。

此工艺中,不仅煤气中的显热白白洗掉,还浪费了水电。江苏某磷化工企业对一台煤气炉进行了余热利用改造。改造中,只在双束管前加一台热管余热锅炉,煤气先回收余热降温后再进双束管,其他不变。该煤气炉直径3000毫米,产气量5000~6000牛顿立方米,煤气温度350~550℃,回收的热量产生0.4兆帕的饱和蒸汽,用于干燥热源。经实测产汽500~900千克,三四个月即可收回投资。

25.工业窑炉余热回收

国内水玻璃传统工艺是煤气做热源,纯碱和石英砂为原料,煅烧后产生350℃左右尾气直接排放。石家庄某厂制定了改造方案,在原烟道上加一闸板,增加一旁路烟道并安装余热锅炉,回收的热量供采暖和洗浴,取得了显著效果。

在无机化工生产中,还有很多可利用热能白白耗掉,如钡锶盐煅烧尾气(温度500℃~600℃)、石灰窑尾气、五钠聚合炉尾气等,这些腐蚀性高灰尾气均适合应用热管技术,从而可实现节能降耗,减少污染。

26.蒸汽的回收利用

蒸汽是由锅炉生产的,由水到蒸汽的过程可以近似地看成一个连续的定压加热过程。对于过热蒸汽可分为三个阶段:一是水的定压预热过程,不饱和水加热到饱和水:二是水的定压汽化过程,从饱和水加热到完全饱和蒸汽;三是饱和蒸汽的定压加热过程,从饱和蒸汽加热到更高温度的过热蒸汽。

在一个标准大气压下,水被加热到100℃时汽化,继续加热,水温不再变化,此时加入的热量全部转化到蒸汽当中。在热力学中把这两部分热量分别称为显热和汽化潜热。1千克水每升高1℃,需要加入的热量大约是4.2千焦,这部分热量叫显热。水从常温20℃加热到100℃,吸热量大约是340千焦。水在100℃时沸腾,此时获得的热量使水转变为蒸汽,1千克水转化为蒸汽需要输入的热量是2257千焦。这部分热量称为汽化潜热(或相变潜热)。可见一个大气压条件下汽化潜热比水的显热能量高得多。蒸汽所携带的总热量远大于同温度下饱和水包含的热量。若再继续加热,蒸汽温度又会上升,饱和蒸汽变成了过热蒸汽。

从水蒸气的生成过程可以看到:压力越高,饱和蒸汽温度也越高;过热度越大,过热蒸汽的温度也越高。压力和温度是表征蒸汽特性的主要参数,参数越高,蒸汽的品位越高,做功能力越大。

蒸汽还有这样一个特性,就是用过以后还可继续使用,用的次数越多,能量的利用就越充分。因此,使用蒸汽的热力设备,要根据蒸汽的压力和温度合理使用。品位较高的蒸汽,尽量多次利用,以发挥蒸汽的效能。例如,把参数较高的蒸汽,先用来背压发电,再去带动工业汽轮机做功,然后再加热产品或物料,最后用于蒸煮或供暖、供热水等。高温蒸汽只用于一般加热过程,就大材小用了。所以,为了有效地利用蒸汽,要根据不同的需要选择合适的蒸汽参数,用过的蒸汽不要轻易排掉,应想方设法继续使用,最好直到无法利用为止,尽量做到一汽多用的目的。有的企业改革了动力工艺,分级使用蒸汽,使高压蒸汽两次通过背压式汽轮机,再去用它加热,最后用于蒸煮,一汽四用。我国引进的大型化肥设备能源利用率很高,除了设备先进,自动化管理水平高之外,还有一个重要原因,就是充分利用化学反应热和蒸汽能量。利用化学反应热生产的蒸汽先进入高压工业汽轮机,接着带动中压工业汽轮机与背压汽轮发电机,然后再用于各种加热工艺,这套设备的吨氨能耗和电耗都比我国普遍设备节能得多。

27.蒸汽回收设备选择

余热的利用方式有两种:一种是热利用,即把余热当做热源来使用;另一种是动力利用,即把余热通过动力机械转换为机械能输出对外做功。余热与能量具有相同特性,可以相互转换,取得机械能、电能、热能、光能等,以满足各种不同的用途。

在动力利用方面,主要是通过蒸汽、燃气、水力等设备带动水泵。风机、压缩机等直接对外做功,或带动发电机转换为电力。

在热利用方面,可通过燃烧器、换热器、加热器等设备去预热燃料、空气、物料,干燥物品,加热给水,生产蒸汽,供应热水等。

但是余热的动力回收和热利用都离不开换热设备。因此各种类型的热交换器乃是余热利用最主要和最基本的设备,按其用途来看,有余热锅炉、加热器(水、油或其他介质)、冷却器、冷凝器、空气预热器、蒸煮器、蒸发器、蒸馏器、干燥器等等。按其工作原理来看,最常用的是表面式(亦称间壁式)换热器、混合式(亦称直接接触式)换热器,以及蓄热器(亦称再生式)换热器,此外还有热管式换热器、热泵系统等,这是近年来正在开发应用的一种新型高效换热器,它具有很高的传热性能及其他一系列优点,是传统换热器的强大竞争对手,具有很大发展前途和生命力。

28.蒸汽回收典型案例

提高用汽设备排汽利用率的最佳方法,就是把排汽送入各种余热利用系统,排汽利用系统有很多种,采用什么系统主要取决于蒸汽参数、排汽量及其污染程度、汽源与用汽部门的相对位置以及载热体种类等许多具体条件,有时可以组合使用几种系统。现以蒸汽锻锤排汽的回收利用为例加以分析。

锻锤排汽是一种典型的余热蒸汽,在机械、造船、汽车等工业中都有汽锤,汽锤的热能利用率不到10%,而90%的热能都随排汽放掉了,不仅造成极大浪费,而且污染环境。如某拖拉机厂锻造分厂有蒸汽锻锤11台,平均排汽量为10.5吨/小时,其压力为0.06~0.08兆帕(表压),温度120~130℃。汽化潜热2187千焦/千克,全年损失热量7.41010千焦。废汽原来不加利用,紧靠厂房排放掉。首先是噪音很大,其次是废汽中的油污溅落,地面一层油污,寸草不长,废汽凝结水的含油废水渗入地下,使附近50米处一口深井因油污染而不能饮用。

另外,一汽车厂锻造分厂有各种容量的蒸汽锻锤数十台,使用1兆帕的蒸汽22.5吨/小时,过热蒸汽在锻锤工作后,排汽背压为0.08~0.1兆帕,温度12万摄氏度,蒸汽回收率约82%,这部分排汽经过填料分离器和机械式分油器初步除油后,含油量小于20毫克/升。返回热电站汽机车间,设置了5台表面式汽-水加热器,每台加热面积100平方米,其中2台为备用。加热生水、软化水、汽轮机凝结水及采暖网路水等。其凝结水再用水泵送往化学水处理站进一步除油软化处理后做锅炉补给水。冬季可回收全部排汽,主要用于采暖,夏季用于供生活热水。最大回收量为16吨/小时,多余的2.5吨/小时用直径250毫米管径排空。

但是随着生产的发展,该厂的锻锤最大用汽量已经达到45~55吨/小时,相应排汽量增至36吨/小时,电站原有废汽回收装置能力并未相应增大,锻锤因背压过高无法正常工作,被迫大量放空,不仅浪费能量,而且噪音极大,影响工人生产和健康。为此,对原有废汽加热器系统进行改造,将管束由钢管换为铜管,以提高传热能力,增大了通水量,2台备用加热器也全部投入运行。这样虽然扩大了废汽回收量,但仍无法全部回收,主要由于回收装置已达设计的最大负荷,如增设新的加热器又受现场位置、水源供水量等限制而无法实现,所以必须考虑采取其他措施。因此决定在厂区新建一座废汽热交换站,内设加热面积为30平方米的表面式热交换器3台,平均每小时将260吨采暖水提高温度30℃,相当于每小时回收废汽14吨,使冬季排汽不再放空,每年可节约标准煤4000吨。

为了在夏季回收废汽,该厂研究了利用废汽加热工厂生活热水的方案,厂区有职工浴池及食堂数十处,每天消耗热水近千吨,用热电站抽汽1兆帕的蒸汽经节流减压并通过表面式或混合式加热器以取得50℃左右的热水,利用效率低,很不经济,而且凝结水回收率也很低。因此考虑利用废汽加热生活用热水,并集中供应各用户,既可减少新蒸汽用量,又可回收废汽,减少凝结水损失。但实施中也存在如下困难:

(1)生活用水正好与锻锤用汽高峰负荷不一致,时间上不能统一;

(2)厂区面积大,用户分散,集中供水需铺设管道;

(3)建一集中加热站投资很大。

最后通过下列措施加以解决:

(1)利用现有废汽热交换站既作冬季采暖热水加热之用,又作非采暖季节生活热水加热之用,一站两用增加投资不多。

(2)新建圆形水罐两座,每座直径9.8米,高8.6米,容积650立方米,罐内装有直管式加热器,大罐兼有蓄热储水双重功能。

(3)新增一台上水泵,水量90吨/小时,扬程54米,该泵既可向大罐补水,又可作为用户的供水泵。

(4)经了解,该城市自来水对管路腐蚀作用不大,因而可利用供暖管网输送生活热水,仅在各用户进口处适当改装即可,从而节省了新管铺设费用。

(5)为了在节假日亦能供应热水,增进了0.6兆帕蒸汽压力的新汽管线。

经过上述改造,该厂目前冬季废汽回收能力包括电站及厂区两处热交换站共计达40吨/小时,比原设计增长116%,夏季回收能力总计达28吨/小时,比原设计增长75%,全厂冬夏平均回收废汽量为34吨/小时左右,每年节约标准煤1.3万吨,改造投资费用在7个月内即可回收。由此可见工矿企业废汽回收潜力很大。

29.凝结水的回收利用

冷凝水回收的主要障碍是水泵输送高温凝结水时的气蚀现象。由于水泵叶轮的抽吸作用,在水泵入口处形成较低的压力,当进口的凝结水的温度高于该处水压所对应的饱和温度时,凝结水汽化,形成许多小汽泡,这些小汽泡在叶轮处由于流体被压缩压力升高,又凝结,形成一个局部空腔,周围液体以很高的速度冲过来,高速液滴冲击在叶轮上,液滴的动量很大,长期下去叶轮表面产生许多小坑,使叶轮的使用寿命大大减小。要防止汽蚀发生,必须采取各种防汽蚀措施,提高水泵入口处的压力,使凝结水温度低于该处压力对应的饱和温度。最简单的措施就是提高水泵入口前凝结水的重力压头,把凝结水储罐布置在较高的位置,把凝结水泵布置在较低的位置。如果工艺条件不允许或者仅仅靠重力压达不到要求,就需要使用专门的凝结水回收装置。

30.按蒸汽的压力温度回收凝结水

(1)用汽设备疏水压力小于0.15兆帕时,凝结水可以利用重力自流回收。尽量用集水罐水泵吸入口的液位差提供防汽蚀压头,如果工艺布置不能保证必要的防汽蚀压头,要采取专门的防汽蚀装置。

(2)用汽设备疏水压力在0.15~0.6兆帕之间,多数采用增压回收方式回收凝结水,要仔细核算阻力损失,设计集水罐超压排汽装置,考虑直接喷淋吸收和增压回收两种方式利用超压排汽。需要选用泵叶轮耐温150℃的水泵,配置专门的防汽蚀装置。

(3)用汽设备凝结水压力大于0.6兆帕时,采用高压、中压回水系统闪蒸装置,闪蒸汽供中压或低压用汽设备。闪蒸量小于或等于低压热用户蒸汽使用量,具有周期使用系数时,直接利用。无中低压热用户时,设中压或低压热交换装置,加热其他工艺介质,以达到相同的热能利用效果。采用喷射热泵方式,增压增量利用。

31.按用汽设备供热方式回收凝结水

负荷稳定,耗汽量大的用户

条件:企业生产工艺要求该类换热设备开机后即处于一种耗汽量和蒸汽使用压力下的稳定负荷。

管网选择:按余压回水方式的限定流速和比摩阻原则设计管径,可不专门设集水罐。回收管网直接回收装置。

回收装置选择:按回收的冷凝水流量和冷凝水热用户阻力确定给水泵防汽蚀装置流量和扬程,在装置吸入管考虑装置故障时的自动排水功能。

特殊工艺用户

造纸行业:造纸行业有多缸纸机和浆机,每个缸有不同的烘干温度和湿度要求,一台纸机或浆机可自成一个独立的热能梯级利用系统。设计时要考虑上述因素,将喷射热泵技术、自控技术和冷凝水回收技术结合起来,以设计最理想的热能利用系统。

卷烟行业:卷烟行业蒸汽使用参数变化比较大,蒸汽使用有直接加湿和间接加热两种方式。可考虑用高压用汽设备的二次闪蒸汽用于直接加湿或空调采暖等方式,二次闪蒸汽汽量和压力不足时可用喷射泵引射和增压。

橡胶行业:用汽设备多,单台耗汽量小,同期使用系数大,用户回水需要合理的压力匹配,才能保证硫化温度。冷凝水既可作锅炉供水,又可作硫化机内胎用水。

总之,不同工艺要有不同的处理方法,在回收系统上和回收装置的选配上力求达到最佳的效果。

32.按用途选择回收冷凝水

冷凝水做锅炉补水

冷凝水做锅炉汽包补水:直接上锅炉是指将回收装置出口管接至原锅炉上水管在省煤器前端的某处(一般应在原上水泵止回阀后端)。由于上水温度提高,应注意省煤器的安全问题,可通过有关计算,确定省煤器出口的温度,对于非沸腾式省煤器,此温度应至少低于饱和温度30℃,对于沸腾式省煤器,省煤器出口温度应保证汽水混合物的干度小于或等于20%。在锅炉原给水控制要求不高或无热力除氧时选择该方案。

冷凝水直接进热力除氧器:大型锅炉对上水连续性和平稳性要求很高,这时凝结水不再直接输入锅炉而是进入热力除氧器,然后由原锅炉上水系统完成输入锅炉的任务。不管是直接上锅炉还是间接上锅炉,从安全的角度考虑,还应设置一根当锅炉或除氧器满水时供凝结水排放的管道,此管一般接到软化水箱中,具有溢流管的性质。

凝结水的这种去向选择是自动的,一般通过电磁阀、双回路调节器等控制阀门来完成。

上一章
离线
目录
下一章
点击中间区域
呼出菜单